QCD fits in diffraction

Laurent Schoeffel CEA Saclay

LOW X MEETING LISBON, PORTUGAL, June 28 - July 1 - 2006

Work done in collaboration with : C. Royon, S. Sapeta, R. Peschanski and E Sauvan

- 1. QCD (DGLAP) analysis of HERA data (F₂^{D(3)}) implications for Tevatron...
- 2. Good and Walker (dipole) approaches:
 - a. 2 gluons exchange model
 - b. BFKL parameterisation of $F_2^{D(3)}$

In progress : « saturation » based models

QCD (DGLAP) fits

QCD fits on HERA data

$$F_2^{D(3)} = \Phi_{IP}(x_{IP}) F^{QCD}(\beta, Q^2) + N_{IR} \Phi_{IR}(x_{IP}) F^{IR}(\beta, Q^2)$$

With input (Q_0^2) distributions :

$$zS(z, Q^2 = Q_0^2) = \left[A_S z^{B_S} (1 - z)^{C_S} (1 + D_S z + E_S \sqrt{z}) \cdot e^{\frac{0.01}{z - 1}} \right]$$
$$zG(z, Q^2 = Q_0^2) = \left[A_G (1 - z)^{C_G} \cdot e^{\frac{0.01}{z - 1}} \right]$$

Reproduction of **fit A** from H1 publication $E_S=D_S=0$ and Q_0^2 scanned to find the best χ^2

parameters	Our fit on H1 data	Table 3 of Ref. [2] (fit A)
Q_0^2	$1.75 \; { m GeV^2}$	$1.75~\mathrm{GeV^2}$
Q_{min}^2	$8.5~{ m GeV^2}$	$8.5~{ m GeV^2}$
$\alpha_{ m I\!P}$	1.118 ± 0.008	1.118 ± 0.008
A_S	1.10 ± 0.32	1.06 ± 0.32
B_S	2.33 ± 0.35	2.30 ± 0.36
C_S	0.61 ± 0.15	0.57 ± 0.15
A_G	0.13 ± 0.03	0.15 ± 0.03
C_G	-0.92 ± 0.16	-0.95 ± 0.20
N_{IR}	$2.8 ext{ } 10^{-3} \pm 0.4 ext{ } 10^{-3}$	$1.7 \ 10^{-3} \pm 0.4 \ 10^{-3}$

Data sets for the analysis: all existing measurements

$$e+p \rightarrow e + X (GAP) Y$$

Data Samples published:

- **1.** H1 LRG (M_V<1.6 GeV)
- **2.** H1 FPS (M_Y=Mp : proton tagged but limited kinematic acceptance)
- 3. ZEUS FPC $(M_{Y} < 2.3 \text{ GeV})$
- 4. ZEUS LPS (M_y=Mp)

All samples converted to M_{γ} < 1.6

- \Rightarrow H1 FPS *1.23 (conversion factor from elastic to M_V<1.6 GeV)
- ⇒ ZEUS LPS *1.23
- \Rightarrow ZEUS FPC *0.85(=0.70*1.23)

Strategy: we add parameters (E_S,D_S) to get a result stable w.r.t. initial parameterisation

- ⇒We do the fits independently on H1 LRG and ZEUS FPC
- ⇒Then, on the 4 combined data sets
- \Rightarrow kinematic space (Q²>4.5 GeV², M_x>2 GeV, β <0.8)

Result for the S,G distributions (central values) $\delta(S)\sim5\%$ and $\delta(G)\sim15\%$ (low z ; >25% at large z)

Result for the S,G distributions parameter values

parameters	H1RAP	ZEUSMX	All data seta
O_0^2	$3~{ m GeV^2}$	$3~{ m GeV^2}$	$3~{ m GeV^2}$
Q_{min}^2	$4.5~{ m GeV^2}$	$4.5~{ m GeV^2}$	$4.5~{ m GeV^2}$
$\alpha_{ m I\!P}$	1.120 ± 0.007	1.104 ± 0.005	1.118 ± 0.005
A_S	0.28 ± 0.09	0.12 ± 0.02	0.30 ± 0.15
B_S	0.13 ± 0.08	-	0.14 ± 0.11
C_S	0.38 ± 0.08	0.50 ± 0.06	0.45 ± 0.13
D_S	6.14 ± 0.82	5.65 ± 1.24	5.72 ± 0.92
E_S	-3.98 ± 0.22	-	-3.66 ± 0.19
A_G	0.24 ± 0.06	0.74 ± 0.15	0.20 ± 0.06
C_G	-0.76 ± 0.19	3.36 ± 1.16	-0.76 ± 0.21
$N_{IR}(H1RAP)$	5.77 ± 0.55	-	6.65 ± 0.47
$N_{IR}(ZEUSMX)$	-	-	-
$N_{IR}(H1TAG)$	-	-	5.06 ± 0.52
$N_{IR}(ZEUSTAG)$	-	-	4.64 ± 0.48

Data set	χ^2 (stat. error)	χ^2 (stat. and syst. error)	nb of data points
H1 [2]	302.0	217.9	240
H1 [3]	50.1	27.5	57
ZEUS [4]	192.8	109.5	102
ZEUS [5]	52.1	22.7	45

Good description!

no dependence in Q₀²

no dependence in $Q_{min}^2 => 4.5 \text{ GeV}^2$ is used ($\neq H1 \text{ publi}$)

Impact for Tevatron

- Possible measurement of the dijet mass fraction at the Tevatron sensitive to gluon density
- ullet Request two jets of 25 GeV and a \bar{p} tagged in the DØ dipole roman pot detector as an example

Uncertainty of the Gluon density at large z : multiply zG by (1-z)^v

Result with the 1994 H1 data => v = 0.0 +/- 0.6

Impact for Tevatron

Taking into account the poor determination of xG at large z

Status for QCD fits

- PDFs from all data sets compatible (within total error)
- zG => essential piece of information for Tevatron/LHC...
 - => direct background to inclusive/exclusive Higgs prod. at LHC!
 - => better understanding of the large z Gluon density

Pb: the whole procedure needs α_{DIFF} to be constant(Q²)?
 compatible with ZEUS published result?
 (under investigation in H1: HERAII data aviable)

« Dipole » model fits

Two-gluon exchange Model

- LO realisation of the Singlet Exchange + γ^* wave function
- BEKW parametrisation: [J. Bartels at al., Eur.Phys.J. C7, 443 (1999)]
 - → Modified form used [ZEUS coll., Nucl. Phys. B713 (2005)]

$$x_{\mathbb{P}}F_2^{D(3)} = c_T \cdot F_{qar{q}}^T + c_L \cdot F_{qar{q}}^L + c_g \cdot F_{qar{q}g}^T$$
 +IR

Dominant terms:

$$F_{q\bar{q}}^{T} \alpha \beta (1-\beta)$$

$$F_{q\bar{q}g}^{T} \alpha \log(1 + \frac{Q^2}{Q_0^2}) (1 - \beta)^{\gamma}$$

 \searrow At low β

 \blacktriangle At medium β

$$F_{q\bar{q}}^{L} \alpha \frac{Q_0^2}{(Q^2 + Q_0^2)} \log^2 \left(\frac{7}{4} + \frac{Q^2}{4\beta Q_0^2}\right) \beta^3 (1 - 2\beta)^2$$

▲ Compare to data

At large β

Combined fit on the 4 data sets

Data set	χ^2 (total error)	nb of data points
H1 [2]	374.0	247
H1 [3]	47.3	59
ZEUS [4]	104.6	142
ZEUS [5]	27.0	45

Kinematic space $\mathbf{Q}^2 > 4.5 \; \mathbf{GeV}^2$ (no need for any cut in $\mathbf{M}_{\mathsf{X}}, \; \boldsymbol{\beta}$)

Fit result plotted with H1 LRG and ZEUS FPC data sets

Good description

For illustration we show the same fit with preliminary H1 measurements (not included in the fit: 99-00 and 04)

The different components from the BEKW fit

Status of BEKW fits

Economic and efficient parameterisation of all data!
 over the whole kinematic range (better than QCD-DGLAP fits)
 dependences on all variables in good agreement with data

- In this model : α_{DIFF} depends of Q²
 - => precise experimental data are essential here...

BFKL dipole approach: Bialas, Peschanski '97 '98 and Munier et al., '98

$$F_2^{D(3)} = \frac{1}{N_C e^2} \left(N^{in} (F_T^{D(in)} + F_L^{D(in)}) + N_T^{el} F_T^{D(el)} + N_L^{el} F_L^{D(el)} + N_R F_2^{\mathbb{R}} \right)$$

Reminder from Nucl.Phys.B534:297-317,1998 the different components

Combined fit on the 4 data sets

Data set	χ^2 (total error)	nb of data points
H1 [2]	361.6	232
H1 [3]	32.8.7	59
ZEUS [4]	189.5	142
ZEUS [5]	17.4	45

No need for a IR component

F_Dⁱⁿ => natural factorisation breaking (Regge)

parameters	value
$\alpha_{ m I\!P}$	1.329 ± 0.006
Q_0	0.364 ± 0.009
N^{in}	0.003 ± 0.001
N_T^{el}	127.730 ± 13.776
N_L^{el}	91.455 ± 9.850

quite large (L)!

But a fit with elastic (L)/(T)~30%

also fine!

Status of the BFKL dipole fits

- Kinematic range more limited / previous models
- Ratio L/T tends to be large for the favored fit ~60% for the elastic component (intermediate β)
 - => measurement of FL
- No IR needed! new feature : natural factorisation breaking?

Conclusions

- Different models describe the data with different basis assumptions : $\alpha_{DIFF}(Q^2)$, IR, ...
- Today: BEKW approach favored: less parameters/large kinematic range and a good χ²

In progress : saturation based models

- Tevatron/LHC data needed
- new prel. H1 analysis with >6 times more Lumi + high Q² HERAII data aviable for analysis...